
Journal of Statistical Physics, Vol. 43, Nos. 5/6, 1986 

Fourier Path Integral Methods: 
A Model Study of Simple Fluids 

D. L. Freeman,  ~ R. D.  Coaison,  2 and J. D.  Dol l  3 

KEY WORDS: Fluids; path-integral; Monte Carlo. 

As illustrated by the diverse range of problems considered in the present 
volume, Monte Carlo based path-integral methods have widespread use in 
condensed-phase, many-body studies. The present note considers their use 
for the study of simple quantum fluids. In particular, we consider a model 
of a Lennard-Jones fluid for the purpose of examining the numerical con- 
vergence characteristics of a number of different path-integral approaches. 
The system chosen is liquid helium, which has been studied in detail by 
Pollock and Ceperley./1) 

As a primitive model of the numerical characteristics of this fluid we 
consider a one-dimensional "cage" of two fixed helium atoms separated by 
a distance of twice the reciprocal of the cube root of the fluid density. A 
third and movable helium atom is located within this cage and interacts 
with the other two atoms via a two-term Gaussian fit ~2) to the helium Len- 
nar~l-Jones potential (a = 2.556 ~, e = 10.22K). Using various path-integral 
methods described below, we then compute the free energy of this model 
system for various temperatures :and note the relative convergence rates of 
the different methods. 

Table I lists the free energy of our model system computed at two tem- 
peratures for a density of pa3=0.365. The free energies were computed 
using the "primitive" discretized method which iterates first-order estimates 
of the "short-time" density matrix. ~3) The Trotter index, P, corresponds to 
the number of subintervals into which the interval (0,/~h) is divided. The 
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Table I. Free Energies a of the Present 
Model  for a Reduced Density of 0.365 as 
Determined by the Primit ive Discretized 

Path-Integral  Method 

T=51.1K T=5.11K 

P A/kT e A/kT 

1 -0 .85 
2 -0.81 
4 -0 .80  
8 -0 .79 

16 -0 .79 

1 - 1 . 4 2  

2 - 1.09 
4 -0.83 
8 -0 .67 

16 -0 .59 
32 -0 .55 
64 -0 .54  

128 -0 .54  
256 -0 .53 

" I n  units of kT. 

present calculations were done using the NMM method discussed by 
Thirumalai, Bruskin, and Berne.~4) The NMM method, especially useful for 
small-dimensional systems, gives free energy values (in units of kT) of 
-0.79 and -0.53 at T=  51.1K and 5.11K, respectively. A measure of the 
magnitude of the quantum-mechanical effects can be obtained by recalling 
that the P = 1 values are the classical results. 

Table II lists the corresponding free energies of the present model 
determined using Fourier path-integral techniques with and without "par- 
tial averaging;" see Ref. 5 for references. In the Fourier method the path 
integrals are performed by parameterizing the paths with a (truncated) 
Fourier series. ~6~ The path integration is thereby reduced to an integration 
over the Fourier coefficients, a procedure easily executed by numerical 
Monte Carlo methods. Partial averaging, described elsewhere in detail, (5'7) 
is an extension of this basic approach in which the effects of high-order 
Fourier coefficients (ignored in the basic method) are included 
(approximately) by means of a simple renormalization procedure. In its 
most elementary form this procedure replaces the "bare" potential by a 
Gaussian averaged one, the width of the Gaussian averaging reflecting both 
the thermal wavelength of the particle in question and the number of 
Fourier terms explicitly retained in the expansion of the paths. The linear 
combination of Gaussians used for the pair potentials was chosen to sim- 
plify the required Gaussian transformations. 
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T a b l e  II a 

T =  51.1K kma x A/kT APA/kT 

T = 5 . 1 1 K  

1 - 0 . 8 4  -0 .79  

2 - 0 . 8 2  -0 .79  
4 - 0 . 8 0  - 0 . 7 9  

8 - 0 . 8 0  - 0 . 7 9  

16 - 0 . 7 9  -0 .79  

1 - 1.23 0.12 

2 - 1.05 - 0.22 

4 -0 .89  -0 .43  
8 -0 .75  - 0 . 5 0  

16 - 0 . 6 6  - 0 . 5 2  

32 - 0 . 6 0  -0 .53  

a As in Table 1 except that the free energies are 
computed using the Fourier method with (PA) 

and without partial averaging. The parameter kmax 

is the number of explicit Fourier coefficients 
retrained in the description of the paths. Monte 
Carlo errors are less than or equal to 0.002 in all 
cases. 

Consideration of Tables I and II indicates several conclusions. Most 
importantly, all methods studied do in fact converge to a common 
(presumably exact) free energy for the present model. As seen elsewhere, (7) 
the relative order of convergence of the free energy for the three methods 
considered is best for the partial average method, intermediate for the 
N M M  procedure, and worst for the direct Fourier approach. It should be 
noted that the detailed rates of convergence of the various methods is, in 
general, a function of the thermodynamic property in question. From 
Table II we see that the partial averaging procedure significantly improves 
the convergence of the Fourier method. Indications of the present model 
study are, for example, that explicit Fourier coefficients of order 16 will be 
required to reach convergence for the 5.11K thermodynamic state of 
Pollock and Ceperley. (1) Preliminary results of liquid hellum studies 
indicate that the above conclusions are correct and that the present model 
is in fact a useful one in estimating the convergence properties of various 
path-integral methods for problems of this type. Details of these 
calculations will be published elsewhere. (s) 
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